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2 How people extract
information from
continuous inputs to make
causal inferences?
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2 What factors influence
time-series causal learning?
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We found causal learning
from dynamics is affected

by MANY factors

P Experiment

* 100 participants (aged 42+12) were recruited via
Prolific Academic and were paid £1.20. The task took
around 10 minutes.

*  Participants were asked to imagine playing the role
of a “forestry manager” who needs to identify the
causal relationship between different pairs of Plant A
and Plant B following observations

POU process

* Ornstein-Uhlenbeck process (Davis et al. 2020;
Uhlenbeck & Ornstein, 1930) was used to generate
how the value of Y would change given its current
value and the previous value of X

P(Avy|V', @,k,B,0,0) = o[(B-v; " +a) =] +N(0,0)

Condition Level

Lag short: k =2 vs. long: k =8

Rigidity rigid: @ = 0.8 vs. non-rigid: ® = 0.2
Slope positive: B = 1 vs. negative: p = —1
Rangey boundary vs. middle, controlled by o
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perceptual constraints on causal

cognitive science society.

https://www.bramleylab.ppls.ed.ac.uk/pdfs/
gong2022intuitions.pdf

PMethod

* Each participant went through 16 trials representing all
combinations of Lag, Rigidity, RangeY, and Direction.
The DirectionX and hence Slope was randomly selected
for each trial.

*  Participants answered “What is the relationship between
Plant A and B” by choosing one of the three radio
buttons labeled: “Positive (regular)”, “Negative
(inverse)”, and “No relationship”

P Results

* As has been found with discrete variables (Buehner &
McGregor, 2006), people more reliably identified a
relationship when its causal lag was short than long
(inductive bases).

*  Accuracy were higher when the effect changed rigidly,

and when the change was closer to the bound
(perceivability).

*  Accuracy were higher when the cause increased or the

effect increased (inductive bases).

*  Further work is needed to reverse engineer how human

iInductive biases and perceptual constraints combine in
shaping causal representation, which could deviate
from standard statistical models (Granger, 1969).
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