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We found causal learning      
  from dynamics is affected  
  by MANY factors

Delay 
Change Direction
Rigidity

Boundary

How people extract 
information from 
continuous inputs to make 
causal inferences? 

What factors influence 
time-series causal learning?

OU process 
Ornstein–Uhlenbeck process (Davis et al. 2020; 
Uhlenbeck & Ornstein, 1930) was used to generate 
how the value of Y would change given its current 
value and the previous value of X

Experiment 
100 participants (aged 42±12) were recruited via 
Prolific Academic and were paid £1.20. The task took 
around 10 minutes. 

Participants were asked to imagine playing the role 
of a “forestry manager” who needs to identify the 
causal relationship between different pairs of Plant A 
and Plant B following observations Results 

As has been found with discrete variables (Buehner & 
McGregor, 2006), people more reliably identified a 
relationship when its causal lag was short than long 
(inductive bases). 

Accuracy were higher when the effect changed rigidly, 
and when the change was closer to the bound 
(perceivability). 

Accuracy were higher when the cause increased or the 
effect increased (inductive bases). 

Further work is needed to reverse engineer how human 
inductive biases and perceptual constraints combine in 
shaping causal representation, which could deviate 
from standard statistical models (Granger, 1969).

Method 
Each participant went through 16 trials representing all 
combinations of Lag, Rigidity, RangeY, and DirectionY. 
The DirectionX and hence Slope was randomly selected 
for each trial. 

Participants answered “What is the relationship between 
Plant A and B” by choosing one of the three radio 
buttons labeled: “Positive (regular)”, “Negative 
(inverse)”, and “No relationship”
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