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B1

• How do people use temporal information to make causal inferences? 
• We investigate whether people can infer causal structures involving both 

generative and preventative relationships. 
• We build both normative- and process-level models to explain human 

judgment (Marr, 1982).

Participants learn structure of several causal “devices” by watching their patterns of 
activation over time.

Fig1. Gamma probability density functions
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🕐 Background

Learning preventative and generative causal 
structures from point events in continuous time  

Tianwei Gong (tia.gong@ed.ac.uk)  

Neil R. Bramley (neil.bramley@ed.ac.uk)

🕑 Task Setting

• Generative links: produce an activation of the effect after 1.5±0.5 s. 
• Preventative links: block any activations of the effect within 3±0.5 s. 
• The effect component also has a base rate each 5±0.5 s.
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Fig 2. Causal devices tested in this paper

🕒 Computational- & algorithmic level Models

Considers all possible causal paths that 
could describe what actually happened 
conditional on each possible structural 
hypothesis (Bramley et al., 2017) 

• Explaining each effect that has been 
observed. 

• Explaining away effects that might 
have occurred but were not observed.

b) Simulation-and-summary Approx.
Simulates data under different structures 
and favours whichever structure has 
closest match to the observed data 
(Ullman et al., 2018). 

• Delay: the interval between a cause 
activation and the subsequent effect.  

• Count: the number of subsequent effect 
activations after the cause activation. 

🕓 Human Performance

a) Normative Bayesian Reasoner

Fig 3. Models. a) normative Bayesian reasoner; b) simulation-and-summary approximation
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• Participants: 310 people (regular vs. irregular base rate instruction: 156 vs. 154). 
• Procedure: Participants watched clips from 18 devices and judge the causal structure. 
• Results: Accuracy was substantially higher than chance. Participants performed better in 

structures without non-causal links, and better when causes were intervened on repetitively.

Fig 4. Human accuracy

🕔 Model Fitting
Participants’ judgment were best fit 
by the simulation-and-summary 
approach that combines both the 
“delay” and “count” cues with the 
intervention-based segmentation. 

(Although the normative model 
and the simulation-and-summary 
model with fixed-window 
segmentation were more accurate 
in detecting the structures.)

Download the full paper ⬇
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https://www.bramleylab.ppls.ed.ac.uk/
pdfs/gong2021learning.pdf

🕕 Conclusion
• People are able to use rich 

information in continuous 
time to infer causal structure 
including prevention. 

• Their performance is better 
explained by our process 
model based on delay and 
count heuristic cues.
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