What you didn't see Prevention and generation in continuous time causal induction

Tianwei Gong & Neil R. Bramley, University of Edinburgh

Background

- ✤ How do people use temporal information to make causal inferences?
- ✤ We investigate whether people can infer causal structures involving both generative and **preventative** relationships.
- ✤ We compare two models to human judgments.

Conclusion

- People are able to use rich information in continuous time to infer causal structure including prevention.
- Their performance is better explained by a feature-based model based on *delay* and *count* heuristic cues.

THE UNIVERSITY **EDINBURGH**

- I Download the full paper

Gong, T., & Bramley, N. R.(2020). What you didn't see: Prevention and generation in continuous time causal induction. In Proceedings of the 42th annual conference of the cognitive science society.

https://www.bramleylab.ppls.ed.ac.uk/ pdfs/gong2020what.pdf

- activation over time.
- Generative links: produce an activation of the effect component after 1.5 ± 0.5 s. Preventative links: block any activations of the effect component within 3 ± 0.5 s. The effect component also has a base rate (i.e. self-activates semi-periodically) 5 ± 0.5 s. •

a) Possible causal structures b) Inactivated state c) Cause activation

• Each clip lasts 20 s, which includes three activations on each control component (A and B) e.g.:

Considers all possible causal paths that could describe what actually happened conditional on each possible structural hypothesis (Bramley et al., 2017).

Hypothesis:

Step 1: **Actual attribution**

Explaining effects that have occurred

> Step 2: **Reflective thinking**

Explaining effects that should or might have occurred but were not observed

> Repeating Step 1& 2 on Base Rate

"we should not observe effects right after a presumed preventative cause event because they should have been prevented"

> Step 3: **Prevention Check**

References

39th annual conference of the cognitive science society (pp. 150–155)

Learning Problem

Participants learn structure of several causal "devices" by watching their patterns of

Normative Bayesian Reasoner

 $\alpha = 9$ $\beta = 6$

 $\beta = 20$

G Feature-based Approximation

- Simulates situations under different causal structures and derives statistical "cues", then favors whatever hypothesis has closest match to the observed data in terms of these cues (Ullman et al., 2018).
- Delay: the interval between each control component activation and the subsequent target component activation
- Count: the number of subsequent target component activations after the control component's activation.

*We used empirical distributions based on values averaged from all interventions in the same simulated sequences for demonstration in the ons that treat each intervention as a data point (this figure) in real inference processed

Human Preference

- **Participants**: Sixty participants (26 female, aged 40 ± 13) were recruited via MTurk.
- * Procedure: Participants watched clips from 18 devices and judge the causal structure of each device.
- **Results:** The accuracy at the device level was 56 ± 22%, substantially higher than chance (11%), t(59) = 15.70, p < .001. The accuracy per connection was 73 \pm 17% (Generative: 80%, non-causal: 62%, preventative: 76%).

Model	Accuracy	Parameters	BIC	N Best
Normative	83-95%	λ:2.67; θ:3	3378	10/60
Feature-Based				45/60
delay	60%	λ:3.62	3431	(23)
count	43%	λ:5.49	3548	(12)
combine	43-60%	λ_d :2.36; λ_c :3.03	3239	(10)
Random	11%		4768	5/60

