
v How do people use temporal informa1on to
make causal inferences?

v We inves1gate whether people can infer 
causal structures involving both genera&ve
and preventa&ve rela1onships.

v We compare two models to human 
judgments.

h=ps://www.bramleylab.ppls.ed.ac.uk/
pdfs/gong2020what.pdf
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v People are able to use rich informa1on in 

con1nuous 1me to infer causal structure 
including preven1on.

v Their performance is be=er explained by a 
feature-based model based on delay and 
count heuris1c cues.
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v Par1cipants learn structure of several causal “devices” by watching their pa=erns of 
ac1va1on over 1me.

• Genera1ve links: produce an ac1va1on of the effect component aKer 1.5�0.5 s.
• Preventa1ve links: block any ac1va1ons of the effect component within 3�0.5 s.
• The effect component also has a base rate (i.e. self-ac1vates semi-periodically) 5�0.5 s.

• Each clip lasts 20 s, which includes three ac1va1ons on each control component (A and B) 
e.g.:

v Considers all possible causal paths that could describe what actually happened 
condi1onal on each possible structural hypothesis (Bramley et al., 2017).

v Simulates situa1ons under different causal structures and derives sta1s1cal “cues”, 
then favors whatever hypothesis has closest match to the observed data in terms of 
these cues (Ullman et al., 2018).

• Delay: the interval between each control component ac1va1on and the subsequent target component 
ac1va1on. 

• Count: the number of subsequent target component ac1va1ons aKer the control component’s ac1va1on. 
b) Inactivated state c) Cause activation

d) Effect activation e) Marking the link
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An effect occurred 2 s later*

*We used empirical distribu1ons based on values averaged from all interven1ons in the same simulated sequences for demonstra1on in the paper (Fig. 5), but used 
distribu1ons that treat each interven1on as a data point (this figure) in real inference processes.  
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v Par&cipants: Sixty par1cipants (26 female, aged 40 ± 13) were recruited via MTurk.
v Procedure: Par1cipants watched clips from 18 devices and judge the causal structure 

of each device. 
v Results: The accuracy at the device level was 56 � 22%, substan1ally higher than 

chance (11%), t(59) = 15.70, p < .001. The accuracy per connec1on was 73 � 17%
(Genera1ve: 80%, non-causal: 62%, preventa1ve: 76%). 
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Explaining effects that have
occurred

Explaining effects that should or might 
have occurred but were not observed 

“we should not observe effects right after 
a presumed preventative cause event 

because they should have been prevented”

https://www.bramleylab.ppls.ed.ac.uk/pdfs/gong2020what.pdf

