What you didn’'t see 8
Prevention and generation

o) Learning Problem
% Participants learn structure of several causal “devices” by watching their patterns of
activation over time.

* Generative links: produce an activation of the effect component after 1.5+0.5 s.
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a) Possible causal structures
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*** How do people use temporal information to
make causal inferences?

% We investigate whether people can infer €8

causal structures involving both generative
and preventative relationships.

¢ We compare two models to human
judgments.

C O n C I U S i O n Hypothesis:

] . . . A P
¢ People are able to use rich information in Y
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continuous time to infer causal structure
including prevention. Step 1:
. : ; : Actual attribution
** Their performance is better explained by a a
feature-based model based on delay and Explaining effects that have
count heuristic cues. Step 2:

Reflective thinking

Explaining effects that should or might
have occurred but were not observed

Repeating
Step 1& 2 on Base Rate

T H E U N I VE RS I TY “we should not observe effects right after
of EDINBURGH vecalts thety should have beon provented”
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* Each clip lasts 20 s, which includes three activations on each control component (A and B)

Normative Bayesian Reasoner

¢ Considers all possible causal paths that could describe what actually happened
conditional on each possible structural hypothesis (Bramley et al., 2017).
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Step 3:
Prevention Check
Dowmload the full paper
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l) Feature-based Approximation

+» Simulates situations under different causal structures and derives statistical “cues”,

then favors whatever hypothesis has closest match to the observed data in terms of
these cues (Ullman et al., 2018).

* Delay: the interval between each control component activation and the subsequent target component

activation.

*  Count: the number of subsequent target component activations after the control component’s activation.
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*We used empirical distributions based on values averaged from all interventions in the same simulated sequences for demonstration in the paper (Fig. 5), but used
distributions that treat each intervention as a data point (this figure) in real inference processes.

c)Human Preference

*» Participants: Sixty participants (26 female, aged 40 + 13) were recruited via MTurk.

** Procedure: Participants watched clips from 18 devices and judge the causal structure
of each device.

** Results: The accuracy at the device level was 56 + 22%, substantially higher than
chance (11%), t(59) = 15.70, p < .001. The accuracy per connection was 73 + 17%
(Generative: 80%, non-causal: 62%, preventative: 76%).

Model Accuracy Parameters BIC N Best
Normative  83-95% A:2.67; 0:3 3378  10/60
Feature-Based 45/60

delay 60% A:3.62 3431 (23)

count 43% A:5.49 3548 (12)

combine 43-60% Ag:2.36; A.:3.03 3239 (10)
Random 11% 4768  5/60
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