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1 Background (Chapter 1-3)

We all learn how to navigate the journey of life. Throughout history, humans have sought to uncover
the secrets of hunting, farming, cooking, and healing. The challenge lies in discovering what truly
“works”, a challenge intricately intertwined with our understanding of the objective world’s causal

structure.
Humans began seeking causal conclusions long before the evolution of science or the advent of

formal scientific education for individuals. Every day, we continue to collect experiences, with each
passing moment bringing forth myriad occurrences. We might judge that a backfiring car startled
some birds, a new food gave us indigestion, infer from a boiling kettle that someone was recently in
the break room, from the heavy evening tra�c that an accident has occurred, predict that you will
be sore the day after the gym, or that a storm is coming after a pink sunrise. All these inferences
leverage causal models linking events in virtue of their experienced and historical temporal proximity
through the lens of our intuitive causal theories. Time is inherent to our understanding of the world,
shaping how we link the things that happen around us and the actions we take. As such, understanding
how individuals acquire knowledge of causal structures from temporal events becomes a core aspect of
comprehending the cognitive process of causal learning.

Throughout the extensive history of causal cognition research, the field has established many theo-
retical and computational models aimed at describing human causal learning processes. Some notable
examples include causal Bayesian networks, widely utilized not only in cognitive research (Gri�ths
& Tenenbaum, 2005; Rottman & Hastie, 2014) but also in scientific causal discoveries (Pearl, 2000).
Additionally, classic learning theories like the Rescorla-Wagner rule (Rescorla & Wagner, 1972) and
Power PC (Buehner et al., 2003; Cheng, 1997) are encompassed within this framework, along with re-
cent process-level models that further consider the constraints of human cognitive resources (Bonawitz
et al., 2014; Bramley et al., 2017; Davis & Rehder, 2020). However, most of these studies focus
on scenarios where the evidence is helpfully “prepackaged” in the form of multiple (typically inde-
pendent) trials or observations in which combinations of causal variables take di↵erent states (Allan,
1980; Cheng, 1997; Gri�ths & Tenenbaum, 2005; Rescorla & Wagner, 1972). One common paradigm
involves presenting participants with a set of independent samples in which putative cause and e↵ect
events are either present or absent. Cover stories have been used to frame this as data arising from
experimental research in biology (Buehner et al., 2003; Lu et al., 2008), physics (Coenen et al., 2015;
Lagnado & Sloman, 2004), and psychology (Rottman & Keil, 2012), since multiple independent trials
are often the data that scientists collect under laboratory conditions.

While these settings put timing considerations to one side, they do not eliminate them (Pacer &
Gri�ths, 2015). Fundamental questions remain as to how to determine an appropriate time window
to measure outcomes, how to ensure the observations are su�ciently independent to be aggregated
(Gong & Bramley, 2023b), and how to determine the timing of interventions since some time-dependent
factors (e.g. age) may also mediate the relationships between variables (Gong et al., 2023; Rottman,
2016). This implies we must to be able to litigate between competing causal explanations linking
multiple events even as they occur and recur within a single ongoing data-stream, which remains
relatively unexplored in the literature. Besides, many causal processes in the natural world are also
cyclic (Malthus, 1872), and people frequently report causal beliefs that include feedback loops when
allowed to do so in experiments (Kim & Ahn, 2002; Nikolic & Lagnado, 2015; Rehder, 2017; Sloman
et al., 1998). Cyclic systems can involve both excitatory or inhibitory feedback, which can result in
complex, periodic and chaotic behavior (Davis et al., 2020). Recognizing, predicting, explaining or
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controlling the behavior of such cyclic causal systems is only possible if one properly represents the
temporal dimension.

On the other side, empirical studies have shown that people adhere to several generic principles
when processing delay information: They prefer causal explanations that suggest shorter delays be-
tween the causes and e↵ects (Buehner & McGregor, 2006; Shanks et al., 1989), those that are more
reliable (Bramley et al., 2018; Greville & Buehner, 2010), and those that involve more predictable
delays (Hagmayer & Waldmann, 2002; Stephan et al., 2020). However, due to the lack of a computa-
tional framework, we cannot fully account for the rationale behind these preferences or the existence
of multiple preferences within the same task (Greville & Buehner, 2010). Meanwhile, the empirical
patterns were discovered non-systematically and mainly focused on systems that include only one
evaluated cause and one e↵ect. It remains unknown how people would judge when the causal system
involves more than two variables, di↵erent kinds of causal links (generative vs. preventative; acyclic
vs. cyclic), and when they need to make their own interventions.

This thesis explores computational theories and empirical knowledge regarding how people learn
causal structures from events unfolding in continuous time. The precis is constructed using three key
features of time:

Continuous Present: There exists an infinity of time points where events could occur. Chapter 4
provides a rational Bayesian framework capable of representing these dynamic and continuous features.
It demonstrates how this framework can explain the principles of short, reliable, and predicted delays
found in human reasoning. Additionally, this framework is shown to recover human judgments in seven
causal learning tasks.

Intractable Past: Any event happening now could, in principle, be attributed to any event that
occurred earlier. Chapter 5 explores how people learn in systematically manipulated causal learning
tasks, encompassing causal systems with generative and preventative links. Chapter 6 delves into how
people strategically intervene in time to enhance their understanding of causal structures. In both
chapters, computational models are proposed to approximate the normative solution, considering the
issue of intractability.

Unknown Future: Evidence is still forthcoming. Chapter 7 explores how people consider the unseen
future and how di↵erent contextual implications about the future can even lead to opposing causal
conclusions.

2 Chapter 4: Continuous Present

This chapter develops a rational framework that incorporates the role of time in guiding causal learning.
I work within the Bayesian rational analysis tradition (Anderson, 1990; Marr, 1982), as this has proven
successful in developing theories of atemporal causal induction (Gri�ths & Tenenbaum, 2005; Rottman
& Hastie, 2014). However, I depart from past analyses of causal inference by linking causal influence
with dependence between events in continuous time (i.e. contiguity) rather than co-incidence of variable
states across independent trials (i.e. contingency).

I here use a daily example to demonstrate the way of using Poisson-gamma family to capture
temporal information to make causal inference. We suppose a fictional substance called 5-HTP is
used to treat insomnia. Consuming an 5-HTP capsule can cause a person to sleep, representing a
one-cause–one-e↵ect scenario. Here, temporal information is embedded within the delay between the
causative event of pill consumption and its e↵ect event of falling asleep. The causal delay can vary
across di↵erent mechanisms and hence follow distributions with di↵erent shapes (see Figure 1a). The
gamma distribution provides a variety of shapes to capture di↵erent temporal mechanisms. It can be
codified with a shape parameter ↵ along with the rate parameter �:

Pd(t|↵,�) =
�↵

�(↵)
t↵�1e��t (1)

We might also model the same e↵ect less granularly in terms of the pill’s production of Melatonin
particles over time (Figure 1b), forming as one kind of one-cause–many-e↵ect scenarios. In this case,
instead of focusing on the relationship between a cause and individual e↵ect events, it may be more
practical to think at a rate-level about how many additional events we expect it be generated by the
cause per time unit and how this rate change to be spread over time. This requires reasoning about
the functional form of the event’s causal influence on the e↵ect’s rate over time, such as, a potential
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Figure 1: Examples of two types of function that could be used to model cause-e↵ect delays and
causal influences, respectively. Illustrative example relates a drug “5-HTP” and sleep. (a) a gamma
probability density function capturing the delay between taking a drug and falling asleep and (b) scaled
gamma density function capturing the rate of melatonin production after drug is administered. The
purple distribution is the ground truth generative distribution. The orange e↵ects in the timeline are
those in fact generated by the drug while the gray e↵ects are the base rate e↵ects.

incubation period, peak, and a decay process. The scaled Gamma distributions are used to represent
how the rate changes � = f(�max, t) across time (Figure 1b). The Poisson process is used to model
the probability Pr(k|�) of observing a particular quantity k of such independent events (the number
of events per time unit) given their assumed rate �:

Pr(k|�) =
�ke��

k!
(2)

Challenging our initial 5-HTP example, everyday continuous-time evidence is often more compli-
cated: Events can occur at any time point, and di↵erent potential causes can overlap in time leading
to pervasive credit assignment questions. Given two levels of granularity shown above, I propose two
schemes to solve the problem. The event-based scheme uses the concept of token-level “actual causa-
tion” to map each event to its possible causes (Halpern, 2016), identifying which of several candidate
events actually caused the observed outcome (Gerstenberg et al., 2021; Stephan et al., 2020). One can
consider various possible causal pathways that could produce the observed events, depending on the
underlying causal mechanisms (Bramley et al., 2018; Valentin et al., 2022).

The rate-based scheme models causes that temporarily a↵ect the rate of occurrence of some e↵ect.
For a generative cause like “5-HTP”, we expect the rate of its e↵ect to temporarily increase from its base
rate, and intuitively expect such rate increases to be additive (unless there are also interactions between
the base rate causes and the focal cause). That is, an independent generative cause is something that
adds extra events to the timeline without a↵ecting those that would have been there anyway. For
example, we might think of a large gathering causing Covid rates to spike by contributing additional
infection events. We can model this even though it is infeasible to establish a one-to-one relationships
between individual cases caused by base rates and those caused by the gathering.

This rational approach anticipates the ceteris paribus human preference for causal explanations
that posit shorter, more reliable and more predictable causal influences (Buehner & McGregor, 2006;
Greville & Buehner, 2010; Hagmayer & Waldmann, 2002; Shanks et al., 1989). Besides, the framework
shows how to uncover the underlying causal structure all manner of complex, mechanistically specified
continuous-time settings. I showed our framework can explain behavioral patterns across a range of
learning tasks from the last 20 years (see Table 1 for a summary). These tasks encompass a variety of
scenarios, including extended episodes containing many events and episodic evidence in which the same
events recur. They also vary in the size of the hypothesis space, the involvement of background activity,
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Table 1: The features of datasets modeled in Chapter 4.

Name Reference Base
Rate

Prevention Cycle Delay
Prior

Continuous timeline, e↵ect specified:
Earthquake Lagnado and Speekenbrink (2010) 4 7 7 7
Device: Prevention Gong and Bramley (2023a) 4 4 7 4
Continuous timeline, e↵ect unspecified:
Device: Active Learning Gong et al. (2023) 7 7 4 4
Episodic evidence, e↵ect specified:
Bacteria Greville and Buehner (2007) 4 4 7 7
Future Bacteria Gong and Bramley (2023b) 4 4 7 7
Episodic evidence, e↵ect unspecified:
Computer Virus Lagnado and Sloman (2006) 7 7 4 7
Device: Chain or Fork Bramley et al. (2018) 7 7 7 7

preventative connections, and the presence of cyclic dynamics, as well as how much information learners
had about the relevant causal delay distributions and base rates. I find a good degree of consistency
between judgments from the rational framework and judgments from people (e.g. Pearson correlation:
0.68-0.96). Thus, people are not only capable of utilizing temporal information in diverse causal
learning situations but also doing so in systematic, predictable, and to some extent, rational ways.

3 Chapter 5: Intractable Past 1

Few studies have examined learning and reasoning about systems with events unfolding in continuous
time. Among these, none have explored learning about preventative causal influences. How do people
use temporal information to infer which components of a causal system generate or prevent activity in
other components? In what ways do generative and preventative causes interact to shape the behavior
of causal mechanisms and their learnability? What algorithms might people employ to process temporal
dynamics for making causal inferences, particularly when they need to solve problems in real time?

In this chapter, I explore human causal structure learning within a space of hypotheses that combine
generative and preventative causal relationships. Participants observe the behavior of causal devices
as they are perturbed by fixed interventions and subject to either regular or irregular spontaneous
activations (see Figure 2). The normative solution to this question, as mentioned in Section 2, relies
on detailed considerations about the token-level causation giving rise to the observable evidence (i.e.
which particular event actually caused which particular e↵ect). While the enumerative approach
achieves benchmark performance by inverting the generative model, exhaustively considering pathways
linking all observed events, it makes unrealistic demands on memory storage and computing power
compared to what could plausibly be involved in humans. I propose a family of more cognitively
plausible algorithmic approximations. It is based on the simulation-and-summary-statistic idea which
is an important approach in Approximate Bayesian Computation in statistics (Blum et al., 2013;
Sunn̊aker et al., 2013; Ullman et al., 2018). The proposed approximation algorithms consider three
bounded features that are often highlighted in cognitive psychology: mental simulation — people
make inferences by comparing their observations to mental simulations of what kind of pattern they
expect to happen (Battaglia et al., 2013; Gerstenberg et al., 2021); (structurally) local computation —
people make causal attributions at the level of individual links without accommodating the full space
of global causal models (Davis et al., 2020; Fernbach & Sloman, 2009); and (temporally) local evidence
— people abstract cues to help reasoning by segmenting the evidence encountered across an extended
observation (Bramley et al., 2017; Harman, 1986).

In Experiment 1, I provided an initial empirical demonstration that people can use real-time tem-
poral information to detangle the influences of generative and preventative causes and identify causal
structures involving combinations thereof. Besides, it is found that the base rate regularity matters
as participants better identified preventative connections when the e↵ect otherwise activates regu-
larly. The type of neighboring connections matters as participants better identified a connection when

1The research from this chapter appears in the literature as: Gong, T., & Bramley, N. R. (2023a). Continuous time
causal structure induction with prevention and generation. Cognition, 240, 10553. The task demo is available here.
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Figure 2: Causal devices tested in Chapter 5. a-d) Experimental interfaces. Participants were in-
structed to the control components and target components in the causal devices and observed how
the system reacted to pre-set interventions. They marked their answers of the role of each connection
during or after the observation. e) The response hypothesis space (all possible pairwise combinations
of generative (G), non-causal (N), and preventative (P) connections). f) The illustrations shown to
participants in the regular (periodic) vs. irregular (exogenous) base rate condition.

it was paired with a generative neighbor. The timing and sequence of interventions matter as par-
ticipants identified generative relationships better when the interventions were clustered rather than
interleaved. These rich empirical patterns, as well as the quantitative judgments, were better captured
by the summary-statistic approach rather than the normative approach.

In Experiment 2, I further constructed two special types of stimuli for which two models have
di↵erent dominant answer. They are based on the two locality principles driving the summary-statistic
model: (1) Local computation indicates a failure to account for the influence of the other connections
in the system, and (2) Local evidence indicates a failure to take into account whatever happened
before their current observation window. In the first type of scenarios, the learner needs to identify
a generative target cause that is paired with a preventative cause. This presents a challenge for local
computation because the preventative cause can block the generative causes’ influence and mislead a
local learner into believing the target connection is a non-causal connection. In the second type of
scenarios, a non-causal target is paired with a generative neighboring component. For a local learner
who only focuses on a small time window after each intervention, the generative influences can easily
spill over to the observation window during which the learner is focused on the target non-causal
component and leading to statistics more typical of generative causation. Participants’ judgments for
both types were consistent with the summary-statistic learners rather than the normative learners. In
sum, this project demonstrates a quantitative account of how people manage to learn causal structure
on the basis of real-time continuous temporal dynamics.

4 Chapter 6: Making Interventions in Continuous Time 2

The ability to predict, plan, and control events in the world demands a sophisticated representation of
the world’s causal structure. Learning such a causal model requires gathering causal evidence through
interventions (Pearl, 2000). However, learning causal structure in general, and selecting interventions
in particular, are computationally challenging problems even under idealized conditions (Bramley et
al., 2017). In everyday life, this challenge is compounded by the need to interact with the causal
environment in real time, bringing computational constraints to the fore (Gri�ths et al., 2015; Simon,
1982). How do people actively learn about causal structure in real time?

In this chapter, I constructed a causal learning task in which participants interact with causal
devices in real time, deciding when and where to intervene in order to gather information about
how the device works. There are at least two typical ways to intervene in a causal system: (1)
By activating components, thus potentially setting in motion a new sequence of events; and (2) by

2Gong, T., Gerstenberg, T., Mayrhofer, R., & Bramley, N. R. (2023). Active causal structure learning in continuous
time. Cognitive Psychology, 140, 101542. The task demo is available here.
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Figure 3: Stimuli and model predictions in Experiment 2 of Chapter 5. a) Stimuli. Curved arrows
indicate the true underlying generative process. b) Judgment predictions from di↵erent models. The
normative and summary-statistic models particularly di↵er in their judgments about the target com-
ponents, with opaque bars used to highlight where the modal response shifts between normative and
summary statistic models.

blocking components, thus preventing that component both from being activated and from activating
any other components until it is unblocked again. In two experiments, I included a range of acyclic
and cyclic causal structures. In Experiment 1, I allowed participants to activate components while in
Experiment 2, I also allowed them to block components.

Two experiments showed that people are able to infer causal structure through active intervention
in a challenging continuous-time learning setting. Participants had di↵erent error patterns from an
ideal observer model, in particular making more accurate judgments about acyclic structures than
cyclic structures while the ideal observer had the reverse pattern. It was also found that di↵erences
in accuracy across conditions were associated with di↵erences in the character of the evidence. The
informativeness of evidence predicted participants’ performance in acyclic structures, but the com-
plexity of evidence appeared to dominate participants’ performance in cyclic structures where it was
generally higher. Participants who were able to generate evidence that was both informative but not
overly complex tended to perform best overall (see Figure 4).

Intervention choices were also partly shaped by a drive to control computational demands. In
terms of when to intervene, participants performed fewer activating interventions and waited longer
between them on cyclic structures that tended to produce more events. They also tended to perform
more activating interventions on four-node structures yielding a similar number of events as for three-
node structures but presumably responding to the greater initial uncertainty (larger space of structure
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Figure 4: Scatterplots of average final IO accuracy (indexing evidence informativeness) and event
density (indexing evidence complexity) for each participant with color and size indicating that partic-
ipants’ judgment accuracy in Chapter 6. Participants with higher accuracy generated evidence that
was both more informative and less complex (the upper left area).

possibilities). They blocked more often in cyclic than acyclic devices and did so when many events
could be expected to occur in the near future. When the expected upcoming evidential complexity was
already high, participants were more likely to wait or block rather than activate another component
to produce more events.

The empirical results support the central idea that managing computational cost plays an important
role in interventional decisions and success in the real-time causal learning setting. I then model the
role of complexity in shaping participants’ causal judgments and intervention choices. The judgment
model assumes that human causal judgments q 2 Q{X ! Y,X  Y,X $ Y,X?Y } are a noisy
version of the ideal observer’s posterior marginalized across connections IOq, where the noise degree
depends on the density, and hence complexity. I capture this with a dynamic softmax function (Luce,
1959):

P (judgment =q) =
exp

�
IOq /(⌧1N + ⌧2)

�
X

q02Q

exp
�
IOq0 /(⌧1N + ⌧2)

� (3)

Here N denotes a trial’s event density (average number of events per second). The judgment tem-
perature component is thus a linear function of events f(N) = ⌧1N + ⌧2 with two parameters
⌧1, ⌧2 2 (0,+1) that are constant across trials, while N varies across trials depending on what inter-
ventions are performed and how the system reacts to them.

The intervention model is based on the resource-rational framework (Lieder & Gri�ths, 2020),
suggesting human minds discover solutions that trade o↵ e�ciently between the costs of computation
and its rewards in greater accuracy or performance. Accordingly, the expected utility of an action
E[U(i⇤)] to a bounded learner balances expected reward EIG (i.e. expected information gain) and cost
of computation ECC (i.e. expected computational cost; measured by the expected event density):

E[U(i⇤)] =

ty�1X

t=tx

R(t) ·
⇥
EIG[i⇤]t+1

t � ! · ECC[i⇤]t+1
t

⇤
(4)

Here ! scales the cost component to align it with the epistemic reward scale of bits, the sum aggregates
the expected future gains and costs over future seconds up until ty, with R(t) as a discount function
which diminishes the utility of information and the dis-utility of computational costs the further into
the future they occur.

Both models proposed above can best capture participants’ judgments and interventions among
a set of di↵erent computational models (see Figure 5 for a demostration). The experiments and
modeling show that participants’ causal judgments depend on not just the informativeness but also
the complexity of the evidence they gather, and that they adapt their actions to the ongoing event

7



−150

−100

−50

0

0 1 2 3 4 5 6 7 8 9 10
Time (s)

M
in

us
 E

C
C

Action A B C N

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10
Time (s)

EI
G

Action A B C N

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
Time (s)

C
om

bi
ne

d 
M

od
el

Action A B C N

B C CA B B C CA B B C CA B

aA aB aC ∅

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
Time (s)

C
om

bi
ne

d 
M

od
el

Action A B C NaA aB aC ∅ 

Figure 5: Example of real-time model prediction for a participant in reliable condition of Experiment
1 in Chapter 6 facing A ! B ! C structure. Lines and points show instantaneous value for each
potential intervention (colors) or non-intervention (black). Dashed vertical lines show participants
interventions. Model takes earlier interventions and observations into consideration and predicts value
of intervention choices for each 1-second window (marked by vertical white/gray shading). Parameters
of the combined model based on EIG + local polynomial cost model fit to this individual. Model fit
is the product of likelihoods of the chosen action or non-action in each window.

dynamics during learning so as to strike a balance between expected information gain and anticipated
inferential complexity. Participants’ ability to do this was presumably limited by their information
processing capacity, leading to a kind of “less is more” phenomenon (Gigerenzer & Todd, 1999) in
which simpler evidence was often more valuable to them even when less normatively informative.
These findings contribute to our understanding of causal inference in continuous time, incorporate a
new dimension to the study of human active learning and o↵er new directions for research into human
learning.

5 Chapter 7: Unknown Future 3

Discovering and measuring causal e↵ects is of central interest for both individual cognition and scientific
practice. Unfortunately, even with good quality experimental data and a well matched control group
this can still be challenging, because genuine causal influences can take complex forms and our mea-
surements of them are inevitably incomplete: Some e↵ects might occur instantly and dissipate rapidly
(such as from electric shocks or adrenaline injections), but others might peak later (paracetamol) grow
or compound over minutes, days or years (perhaps lockdowns on covid rates, or European membership
decisions on GDP). This highlights a central challenge for causal induction: To estimate the strength
and direction of a novel cause, we need to decide when best to measure it. But to the extent that a
treatment is truly novel, we are likely to lack the necessary mechanistic understanding to make this
choice and so be forced into guesswork based on our inductive biases and whatever measurements we
have. How do people make causal inferences when they only have data that is “un-prepackaged” with
the future open?

I demonstrate the research design with the following scenario (Greville & Buehner, 2007): Imagine
a biotechnology lab examines the e↵ect of several types of radiation treatment on the survival of
bacterial cultures. Bacterial cultures die naturally after a number of days, but the treatment might
promote the survival of bacterial cultures (be beneficial) or kill them prematurely (be harmful). In the
example shown in Figure 6a, are Sigma-Rays harmful or beneficial to the survival of AB-loop bacteria?

There are competing perspectives in the literature: (1) Contingency provides no straightforward
answer here since both groups have experienced the same total number of deaths by the end of the
observation. (2) The contiguity principle (Greville & Buehner, 2007) would predict that the treatment
seems to be beneficial, potentially postponing the death of bacteria, as there are fewer deaths in the
observations on days 1–3. (3) If the learner notices the trend, they might rather suspect the treatment
will ultimately prove harmful since the experimental condition has a worryingly increasing trend and
most of the forty samples are still alive on Day 5 (see Figure 6b). To test whether people hold these

3Gong, T., & Bramley, N. R. (2023b). Evidence from the future. PsyArXiv (In press at Journal of Experimental
Psychology: General).
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Figure 6: An example stimulus material of the study in Chapter 7 (a) and the corresponding extrap-
olation results of how the new case will be in the future given di↵erent regression models (b). The
Poisson regression would predict the experimental case as 0 at Day 9 due to the cumulative cases have
exceeded the max sample size. The Gaussian process regression was based on RBF kernel (Schulz
et al., 2017).

three di↵erent mindsets and may apply di↵erent principles in di↵erent contexts, I manipulated in three
experiments what participants are told about the experimenter’s stopping rule (Experiment 1), the
display format (Experiment 2), and the sample size (Experiment 3).

Across three experiments, I constructed trajectories in which new death cases after treatments
increased or decreased over time. I found that participants robustly used the contingency information
(Buehner et al., 2003; Cheng, 1997; Gri�ths & Tenenbaum, 2005). Beyond this, they used the temporal
information and used it in a malleable way. Participants judged a treatment to be more harmful if
more samples died in the early days in the experimental condition, consistent with the contiguity
principle found in previous studies (Greville & Buehner, 2007; Pacer & Gri�ths, 2012). However,
this only happened when participants saw the data in a static format and were either told that the
observation had finished (Experiment 1) or that the total sample size was so small that they had seen
the most of the potential data by day 5 (Experiment 3). In contrast, participants relied on the trend
when they were informed that the observation had not ended (Experiment 1) or experienced a dynamic
format where the data were revealed sequentially (Experiment 2). These e↵ects consistently occurred
regardless of whether the contingency information suggested the cause to be harmful, beneficial, or
non-causal.

The findings indicate that when utilizing temporal information, people are sensitive to the wider
context (here cued by the cover story, presentation format and sample size). Whether strength judg-
ments reflected generalization beyond the data depended on the extent that the context and the
available measurements implied that all the relevant causality had been captured in the provided
observations. Besides the theoretical implication, one practical implication of this study is its demon-
stration that instructional framing influences how people interpret the data they are shown. This
means that providing accurate context as well as data is vital for accurate scientific communication
(Soyer & Hogarth, 2012).
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6 In Summary

In sum, this thesis explores the process of human causal structure induction from events in continuous
time. It builds a bridge between the normative and process levels in causal reasoning, and provide
quantitative predictions about human judgments in various situations. By understanding the mecha-
nisms behind people’s rapid and e�cient learning with limited resources, this thesis contributes to our
understanding of natural cognition while also o↵ering insights into the quest for more human-like al-
gorithms. In our daily lives, we encounter not only expected or surprising events but also ponder their
connections to the past and future. Incorporating a formal framework for temporal causal inference
into the causal theory, would be crucial, for our understanding of human reasoning processes.
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